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Abstract: Background: There has been an emerging concern that non-nutritive sweeteners (NNS) 
can increase the risk of cardiometabolic disease. Much of the attention has focused on acute meta-
bolic and endocrine responses to NNS. To examine whether these mechanisms are operational un-
der real-world scenarios, we conducted a systematic review and network meta-analysis of acute 
trials comparing the effects of non-nutritive sweetened beverages (NNS beverages) with water and 
sugar-sweetened beverages (SSBs) in humans. Methods: MEDLINE, EMBASE, and The Cochrane 
Library were searched through to January 15, 2022. We included acute, single-exposure, random-
ized, and non-randomized, clinical trials in humans, regardless of health status. Three patterns of 
intake were examined: (1) uncoupling interventions, where NNS beverages were consumed alone 
without added energy or nutrients; (2) coupling interventions, where NNS beverages were con-
sumed together with added energy and nutrients as carbohydrates; and (3) delayed coupling inter-
ventions, where NNS beverages were consumed as a preload prior to added energy and nutrients 
as carbohydrates. The primary outcome was a 2 h incremental area under the curve (iAUC) for 
blood glucose concentration. Secondary outcomes included 2 h iAUC for insulin, glucagon-like pep-
tide 1 (GLP-1), gastric inhibitory polypeptide (GIP), peptide YY (PYY), ghrelin, leptin, and glucagon 
concentrations. Network meta-analysis and confidence in the network meta-analysis (CINeMA) 
were conducted in R-studio and CINeMA, respectively. Results: Thirty-six trials involving 472 pre-
dominantly healthy participants were included. Trials examined a variety of single NNS (acesul-
fame potassium, aspartame, cyclamate, saccharin, stevia, and sucralose) and NNS blends (acesul-
fame potassium + aspartame, acesulfame potassium + sucralose, acesulfame potassium + aspartame 
+ cyclamate, and acesulfame potassium + aspartame + sucralose), along with matched water/un-
sweetened controls and SSBs sweetened with various caloric sugars (glucose, sucrose, and fructose). 
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In uncoupling interventions, NNS beverages (single or blends) had no effect on postprandial glu-
cose, insulin, GLP-1, GIP, PYY, ghrelin, and glucagon responses similar to water controls (generally, 
low to moderate confidence), whereas SSBs sweetened with caloric sugars (glucose and sucrose) 
increased postprandial glucose, insulin, GLP-1, and GIP responses with no differences in postpran-
dial ghrelin and glucagon responses (generally, low to moderate confidence). In coupling and de-
layed coupling interventions, NNS beverages had no postprandial glucose and endocrine effects 
similar to controls (generally, low to moderate confidence). Conclusions: The available evidence 
suggests that NNS beverages sweetened with single or blends of NNS have no acute metabolic and 
endocrine effects, similar to water. These findings provide support for NNS beverages as an alter-
native replacement strategy for SSBs in the acute postprandial setting. 

Keywords: non-nutritive sweetened beverages; sugar-sweetened beverages; postprandial; glucose; 
insulin; GLP-1; GIP; PYY; ghrelin; glucagon; network meta-analysis 
 

1. Introduction 
Sugars have emerged as the dominant nutrient of concern in research on human 

health and disease [1]. This concern has resulted in calls for reductions in free sugars to 
≤5–10% of energy by several international health agencies [2–4] and chronic disease asso-
ciations [5,6]. Attention has focused especially on the major source of free sugars, sugar-
sweetened beverages (SSBs), the excess consumption of which has been associated with 
weight gain, diabetes, and their downstream complications, including hypertension and 
coronary heart disease (CHD) [7–10]. 

Replacing SSBs with non-nutritive sweetened beverages (NNS beverages) provide a 
viable means to limit excess calories and potentially avoid downstream complications as-
sociated with weight gain. The U.S. Food and Drug Administration (FDA) has currently 
approved eight non-nutritive sweeteners (NNS): aspartame, acesulfame potassium (ace-
K), luo han guo (monk) fruit extract, neotame, saccharin, stevia, sucralose, and advantame 
[11]. Despite safety approvals by major health and regulatory bodies [11–14], evidence 
from prospective cohort studies suggests that many of these NNS may increase the risk of 
cardiometabolic diseases [15,16]. 

Much of the attention to explaining such signals of harm has focused on the acute 
metabolic and endocrine responses to NNS [17]. Some have proposed that NNS act upon 
intestinal sweet taste receptors leading to the impaired postprandial release of glucagon-
like peptide 1 (GLP-1) and insulin [18,19]. Others have suggested that NNS induces glu-
cose intolerance [20] and impairs metabolic sensitivity to carbohydrates [21]. Such con-
cerns regarding NNS are often based on studies that attribute results of single NNS to the 
whole class [22], despite NNS being metabolically distinct compounds [23]. Whether these 
proposed mechanisms are operational under real-world intakes is unclear. 

Addressing these metabolic concerns requires careful consideration of key method-
ological and design issues including the pattern of intake, type of NNS, and nature of the 
comparator [17]. To address this, we undertook this systematic review and network meta-
analysis to compare the effect of NNS beverages sweetened with single NNS and blends 
of NNS with water and SSBs sweetened with caloric sugars on postprandial glycemic and 
endocrine responses. 

2. Materials and Methods 
2.1. Protocol Registration 

The study protocol was registered on the Open Science Forum (OSF) registry [24]. 
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2.2. Design 
The present systematic review and network meta-analysis was conducted according 

to the Cochrane Handbook for Systematic Reviews of Interventions [25] and reported us-
ing the Preferred Reporting Items for Systematic Reviews and Meta-Analyses Involving a 
Network Meta-analysis (PRISMA-Network Meta-analysis) [26]. 

2.3. Data Sources and Searches 
MEDLINE, EMBASE, and the Cochrane Central Register of Controlled Trials were 

searched through 15 January 2022 for eligible trials using the search strategy presented in 
Supplementary Table S1. Electronic searches were supplemented with manual searches 
of references from selected studies and reviews. 

2.4. Study Selection 
Supplementary Table S2 shows our PICOTS (population, intervention, comparator, 

outcome, time, and settings) framework. Randomized and non-randomized, acute (i.e., 2 
h follow-up duration), single-exposure, crossover, clinical trials in individuals of all health 
backgrounds that investigated the oral consumption of NNS beverages containing NNS 
(single or blends) that had been approved by the U.S. FDA were eligible [11]. Comparisons 
among the following single interventions were included: NNS beverages sweetened with 
single NNS or blends of NNS, water, and SSBs sweetened with caloric sugars. Trials were 
excluded if they involved sugar alcohols (e.g., erythritol), rare sugars (e.g., allulose), preg-
nant or breastfeeding women, non-fasting participants at baseline, had a duration of less 
than 2 h, did not use a comparator arm, and did not provide suitable endpoint data. 

As the presence of other nutrients (e.g., calories in form of carbohydrates) and timing 
of administration (e.g., preload) have independent effects on glycemic and endocrine re-
sponses, three patterns of intakes were analyzed separately: (i) uncoupling interventions, 
where NNS beverages were consumed without added energy or nutrients, (ii) coupling 
interventions, where NNS beverages were consumed together with added energy and 
nutrients as carbohydrates, and (iii) delayed coupling interventions, where NNS bever-
ages were consumed as a preload prior to added energy and nutrients as carbohydrates. 
The preload period was set to be less than or equal to 15 min. 

2.5. Data Extraction 
Two investigators (from a pool of 4: RZ, JCN, TAK, and NM) independently re-

viewed and extracted relevant data from each included report. Extracted data included 
participant characteristics (e.g., health status, age, sex, and BMI), sample size, description 
of interventions (name and amount), study design (randomized and non-randomized), 
NNS pattern of intake (uncoupling, coupling, or delayed coupling intervention), duration 
of follow-up, setting, funding sources, and outcome data. In studies with follow-up dura-
tion >2 h, only the 2 h incremental area under the curve (iAUC) was extracted to ensure 
consistency across studies. Furthermore, 2 h iAUC is a standard way of testing for and 
expressing postprandial blood glucose response (PPGR) across meals. In the absence of 
numerical values for outcome data and the inability to contact study authors, values were 
extracted from figures using Plot Digitizer, version 2.5.1 (Free Software Foundation, Bos-
ton, MA), and computed using standard formulas [27,28]. Disagreements were resolved 
by discussion or, if necessary, by consultation with senior authors (TAK and JLS). 

2.6. Risk of Bias Assessment 
Risk of bias was evaluated using version 2 of the Cochrane risk-of-bias (RoB 2) tool, 

where bias was assessed in five distinct domains (bias arising from the randomization 
process, bias due to deviations from intended interventions, bias due to missing outcome 
data, bias in measurement of the outcome, and bias in selection of the reported result). 
Within each domain, the investigators answered one or more signaling questions and 
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these answers led to judgments of “low risk of bias”, “some concerns”, or “high risk of 
bias” [29]. 

2.7. Outcomes 
The primary outcome was glucose iAUC. Secondary outcomes were iAUC for insu-

lin, glucagon-like peptide 1 (GLP-1), gastric inhibitory polypeptide (GIP), peptide YY 
(PYY), ghrelin, leptin, and glucagon. 

2.8. Data Synthesis 
Where postprandial data at individual timepoints were extracted, the iAUC and var-

iation were computed using the formula outlined in Supplementary Figure S1. Positive 
iAUC was computed for all outcomes, except for ghrelin and glucagon, where the nega-
tive iAUC was computed. Prior to analysis, all endpoints were converted to SI units 
(mmol/L for glucose (=mg/dL × [1/18]), pmol/L for insulin (=µU/mL × 6), pmol/L for GLP-
1 (pg/mL × 0.3032), pmol/L for GIP (pg/mL × [1/4.75]), pmol/L for PYY (pg/mL × 0.25), 
pmol/L for ghrelin (pg/mL × 0.3), and pmol/L for glucagon (pg/mL × [1/3.45]). 

All statistical analyses were performed in R (R Foundation) using the netmeta pack-
ages [30,31]. We evaluated confidence in network meta-analysis effect estimates for all 
outcomes and treatment comparisons using the CINeMA (Confidence In Network Meta-
Analysis) framework [32,33]. 

3. Results 
3.1. Search Results 

Supplementary Figure S2 shows the literature search and selection process. Of 2,846 
reports identified, 2,707 were excluded based on title and abstracts. Of 139 reports re-
viewed in full, 114 were excluded based on full article review. A total of 25 reports [18,34–
57] containing data for 36 acute feeding trials of beverages (n = 472) met the eligibility 
criteria for inclusion. Of these, fifteen reports (21 trials, N = 266) examined uncoupling 
interventions [34–48], three reports (3 trials, N = 27) examined coupling interventions [49–
51], and seven reports (12 trials, N = 179) examined delayed coupling interventions [18,52–
57]. 

3.2. Trial Characteristics 
Supplementary Tables S3–S5 show the characteristics of included trials that exam-

ined uncoupling, coupling, and delayed coupling interventions. 
Uncoupling interventions [34–48]: trials were conducted in Europe (45%), Asia (30%), 

North America (20%), and South America (5%). Trial funding came from agency (35%) 
and industry sources (10%), with the majority of trials not reporting funding sources 
(55%). The trial sample size ranged from 6 to 32 participants (51% male, 49% female) aged 
(median (range) of the reported means) 31.3 (21.3–69.0) years with a BMI of 23.5 (21.2–
33.7) kg/m2. Trials were mainly conducted in otherwise healthy individuals (75%), with 5 
trials (18%) in individuals with type 2 diabetes and 1 trial (8%) in individuals with im-
paired glucose tolerance. Trials examined NNS beverages sweetened with single NNS, 
including ace-K (dose, 165 mg), aspartame (median dose (range), 400 mg (165–1000 mg)), 
cyclamate (800 mg), saccharin (135 mg (75–135 mg)), sucralose (120 mg (40–200 mg)), and 
NNS blends, including ace-K (56 mg) + aspartame (84 mg), and ace-K + aspartame + cy-
clamate (dose not provided), along with matched water controls and SSBs sweetened with 
glucose (75.7 g (75–100 g)), sucrose (35 g (20–76.3 g), and fructose (76.3 g). 

Coupling interventions [49–51]: two of three trials were conducted in Europe (66%) and 
one trial was conducted in North America (33%). All trials were funded by agency 
sources. The trial sample size ranged from 7 to 10 participants (33% male, 67% female) 
aged 27.0 (21.7–27.2) with a BMI of 22.3 (20.6–23.9). All trials were conducted in otherwise 
healthy individuals. Trials examined NNS beverages sweetened with single NNS, 
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including aspartame (140 mg (80–200 mg) and NNS blends including ace-K (58 mg) + as-
partame (31 mg) with carbohydrates loads, including a cherry flavored beverage contain-
ing 60 g carbohydrate as partial hydrolysate (one trial), a chocolate drink containing 20 g 
milk protein, 5 g fat-free and sucrose-free cocoa with 5 g agar (one trial), and a 25 g oral 
glucose solution (one trial). 

Delayed coupling interventions [18,52–57]: trials were mainly conducted in North 
America (83%) and Europe (17%). The majority of trials were funded by agency sources 
(75%), with the remainder not reporting funding sources (25%). The trial sample size 
ranged from 8 participants to 31 participants (37% male, 63% female) aged 28.5 (17.9–51.5) 
with a BMI of 26.1 (21.7–41.0). The majority of trials were conducted in otherwise healthy 
participants (75%), with 1 trial (8%) in individuals with type 1 diabetes and 2 trials (17%) 
in individuals with type 2 diabetes. Trials examined NNS beverages sweetened with sin-
gle NNS, including aspartame (72 mg), saccharin (18 mg), and sucralose (48 mg(24–170 
mg)), and NNS blends including ace-K (58 mg) + aspartame (31 mg), ace-K (41 mg) + su-
cralose (68 mg), and ace-K (18 mg) + aspartame (57 mg) + sucralose (18 mg), along with 
matched water controls as preloads. All trials utilized a 75 g oral glucose solution as the 
carbohydrate load, except one trial [57] which utilized a 25 g oral glucose solution. 

3.3. Risk of Bias 
Supplementary Figures S3–S5 present the risk of bias in each study examining un-

coupling, coupling, and delayed coupling interventions. The overall risk of bias was low 
in 73% (11/15) of uncoupling interventions, 33% (1/3) of studies examining coupling inter-
ventions, and 86% (6/7) of delayed coupling interventions. Some concerns in the overall 
risk of bias were observed in 27% (4/15) of uncoupling interventions, 66% (2/3) of coupling 
interventions, and 14% (1/7) of delayed coupling interventions. The key limitation was 
bias arising from the randomization process due presence of non-randomized trials in the 
overall analysis. 

3.4. Primary Outcome (Glucose) 
3.4.1. Uncoupling Interventions 

The results for uncoupling interventions examining postprandial glucose in healthy 
participants are presented in Figure 1 with CINeMA assessments presented in Supple-
mentary Table S6 and Figures S6–S9. NNS beverages sweetened with single NNS and 
NNS blends had no effect on postprandial glucose similar to water (generally, moderate 
to high confidence), whereas SSBs sweetened with caloric sugars (glucose and sucrose) 
increased postprandial glucose (mostly, high confidence). 

Network meta-analysis results in participants with type 2 diabetes are presented in 
Figure 2, Supplementary Table S7, and Figures S10–S13. NNS beverages sweetened with 
aspartame and saccharin had no effect on postprandial glucose (low confidence) similar 
to water, whereas SSBs sweetened with glucose increased postprandial glucose (low con-
fidence). 

Only one trial comparison (n = 20) was identified in participants with impaired glu-
cose tolerance that found no statistically significant difference in postprandial glucose 
when comparing NNS beverages sweetened with aspartame with a glucose solution (low 
confidence; Supplementary Table S25). 
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Network plot: the size of the nodes is proportional to the number of participants and the line width is proportional to the number of studies. Network table: treatments are grouped by treatment type (i.e., single NNS, NNS blends, water, 
and caloric sweeteners) and are reported in alphabetical order. Treatment estimates (mmol*min/L) are MDs and 95% CIs of the column-defining treatment compared with the row-defining treatment. MDs less than 0 favor the column-
defining treatment. MDs greater than 0 favor the row-defining treatment. Statistically significant results are bolded in black. Results that are not statistically significant are grey and not bolded. The minimally important difference 
(MID) for postprandial glucose response is 100 mmol*min/L. Trivial effects (<1 MID) or no effects have a white background; small important effects (>1 MID) have a light blue background; moderate effects (>2 MID) have a darker blue 
background; large effects (>5 to <10 MID) have a purple background; and very large effects (>10 MID) have a black background. Confidence in the effect estimate (CINeMA) is shown for each treatment comparison: high confidence 
⊕⊕⊕⊕; moderate confidence ⊕⊕⊕; low confidence ⊕⊕; and very low confidence ⊕. See Supplementary Table S6 for overall CiNEMA assessments and Supplementary Figures S6–S9 for detailed assessments of the confidence in 
the effect estimate using the CINeMA framework. 

Figure 1. Network plot and meta-analysis of uncoupling interventions evaluating the effect of non-nutritive sweetened beverages (NNS beverages) sweetened 
single or blends of non-nutritive sweeteners (NNS), water, and sugar-sweetened beverages (SSBs) sweetened with caloric sweeteners on postprandial blood glu-
cose response in healthy participants. 
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postprandial blood glucose response in participants with type 2 diabetes. 

3.4.2. Coupling Interventions 
The results for coupling interventions examining postprandial glucose in healthy 

participants are presented in Figure 3, Supplementary Table S15, and Figure S34. NNS 
beverages sweetened with aspartame (single NNS) and aspartame + ace-K (NNS blend) 
had similar postprandial glucose responses to the control (low confidence). 
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Figure 3. Network plot and meta-analysis of coupling interventions evaluating the effect of non-
nutritive sweetened beverages (NNS beverages) sweetened single or blends of non-nutritive sweet-
eners (NNS) and controls on postprandial glucose response in healthy participants. 
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Supplementary Table S25). 
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non-nutritive sweetened beverages (NNS beverages) sweetened single or blends of non-nutritive 
sweeteners (NNS), water, and sugar-sweetened beverages (SSBs) sweetened with caloric sweeteners 
on postprandial blood glucose response in participants with type 2 diabetes. 
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no effect on postprandial insulin, GLP-1, GIP, and glucagon responses similar to water 
controls (generally, low to moderate confidence). 

Single-trial comparisons were identified in participants living with obesity (compar-
ing NNS beverages sweetened with sucralose vs. water control), examining postprandial 
insulin response in participants with type 1 diabetes (comparing NNS beverages sweet-
ened with sucralose + ace-K vs. water control), examining postprandial insulin, GLP-1, 
GIP, and glucagon responses in type 2 diabetes (comparing NNS beverages sweetened 
with sucralose + ace-K vs. water control), and examining postprandial GIP and glucagon 
responses. No difference in the endpoints was observed among these trial comparisons 
(low confidence; Supplementary Table S25). 

No trials were identified that examined postprandial leptin response. 

4. Discussion 
4.1. Summary of Findings 

This systematic review and network meta-analysis of 36 acute feeding trials involv-
ing 472 predominantly healthy participants compared the effect of NNS beverages sweet-
ened with single or blends of NNS with water and sugar-sweetened beverages (SSBs) 
sweetened with various caloric sugars on postprandial glucose and endocrine responses. 
Three pre-specified patterns of intakes were examined: (1) uncoupling interventions (NNS 
beverages consumed alone without added energy or nutrients), (2) coupling interventions 
(NNS beverages consumed together with additional energy and nutrients as carbohy-
drates), and (3) delayed coupling interventions (NNS beverages consumed as a preload 
prior to added energy and nutrients as carbohydrates). In uncoupling interventions, NNS 
beverages (single or blends) had no effect on postprandial glucose, insulin, GLP-1, GIP, 
PYY, ghrelin, and glucagon responses similar to water controls, whereas SSBs sweetened 
with caloric sugars (glucose and sucrose) increased postprandial glucose, insulin, GLP-1, 
and GIP responses with no differences in ghrelin and glucagon responses. In coupling 
interventions, NNS beverages (single or blends) had no effect on the postprandial glucose 
and insulin responses to carbohydrate loads similar to controls. In delayed coupling in-
terventions, NNS beverages (single and blends) had no effect on postprandial glucose, 
insulin, GLP-1, GIP, and glucagon responses to carbohydrate loads similar to water con-
trols. 

4.2. Findings in the Context of Existing Studies 
Our findings are in agreement with previous systematic reviews and meta-analyses 

that examined the effect of NNS on acute glucose and insulin responses. The findings that 
NNS has no acute effects on postprandial glucose and insulin response when compared 
to a control intervention were recently shown by Greyling et al. [58], by Nichol et al. [59], 
and by Tucker et al. [60] in a prior systematic review and meta-analyses. Despite similar 
findings, there are several differences between these reports and our study: (1) our net-
work meta-analysis was a priori rather than post hoc, (2) in addition to postprandial glu-
cose and insulin outcomes, we also examined other endocrine responses, including GLP-
1, PYY, GIP, ghrelin, and glucagon, (3) we examined the certainty of evidence using CIN-
eMA and the GRADE approach, and (4) in addition to water/unsweetened controls, we 
also compared and quantified the effect of NNS beverages with SSBs, where data were 
available. 

The evidence from our study, which shows no association with acute metabolic and 
endocrine outcomes, is at odds with the systematic review and meta-analysis of cohort 
studies that used prevalent exposure to show long-term harm with NNS consumption 
[15]. Such meta-analyses have a higher risk of bias due to residual confounding, reverse 
causality, and behavior clustering [61–63]. The recently published systematic reviews and 
meta-analyses of both cohort studies [64] and RCTs [65] that used rigorous methods to 
protect against such bias are in line with our results. These studies showed that NNS is 
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not associated with cardiometabolic harm and can be used as a replacement strategy to 
reduce risk from intake of empty calories from SSBs. 

Our study results may also be at odds with results from select narrative reviews, in-
vitro, animal, and human studies [19–22] because these failed to carefully consider key 
methodological and design issues, including the pattern of intake, type of NNS, and na-
ture of the comparator. Our work addressed these gaps and provides a more rigorous 
body of work. 

In this systematic review, we excluded two trials [66,67] due to the consumption of 
beverages in non-fasting conditions and excluded one trial [68] due to preload duration 
being more than 15 mins. However, it is still worth examining the findings from these 
trials as they have some relevance to our study objectives. Tey et al. [66] examined the 
effects of aspartame-, monk fruit-, stevia-, and sucrose-sweetened beverages on postpran-
dial glucose and insulin responses following a standardized breakfast in 30 healthy male 
participants. The authors concluded that the consumption of beverages sweetened with 
the three different NNS had minimal influences on glucose and insulin responses when 
compared to sucrose-sweetened beverages. Pearson et al. [67] examined the effects of 20 
oz of Diet Coke, Coca-Cola, or water with a mixed meal following a pre-trial meal in eight 
college-aged, healthy males. The authors found that although there was no significant dif-
ference in the glucose response among treatments; the insulin response was significantly 
higher after consumption of the Coca-Cola treatment when compared to the Diet Coke 
treatment, and trended higher when compared to the water treatment (p = 0.054). Lastly, 
in a study by Brown et al. [68] which examined postprandial glucose, insulin, and ghrelin 
responses in eight female participants, a combination of 50 g of sucrose and 6 g of granular 
sucralose in 355 mL of water resulted in similar responses when compared to 50 g of su-
crose dissolved in 355 mL of water, whereas 6 g of granular sucralose dissolved in 355 mL 
of water resulted in similar effects when compared to 355 mL of water alone. Overall, even 
though these trials were excluded from our analysis, the findings from these trials are in 
line with our findings. 

4.3. Potential Mechanisms 
The “sweet uncoupling hypothesis” purports that the uncoupling of sweet taste from 

caloric content in the case of NNS may disrupt the metabolic consequences of sweet taste 
[69,70], likely through acute hormonal changes [71]. Our study is uniquely set to test this 
hypothesis. The first set of studies we examined were NNS which were consumed without 
any additional calories and, therefore, were uncoupled from energy. The acute intake of 
these uncoupled beverages did not elicit any acute hormonal response and was similar to 
water. We saw similar results in healthy and people with type 2 diabetes. These studies 
confirmed that NNS were inert, and their intake did not elicit a sweet uncoupling through 
acute metabolic and hormonal response. Although we found that some NNS blends 
showed a slight increase in postprandial glucose response, the effects were trivial and 
likely to be noise. However, still this raises the question of blending of NNS which may 
require further studies to see if any unique combination may have some unknown syner-
gistic mechanism of action. 

The evidence against the sweet uncoupling hypothesis has been mounting and some 
argue that the NNS might alter metabolism as it is simultaneously consumed with glucose 
or other caloric foods [72]. In our second and third sets of studies, we examined the effect 
of coupling NNS with calories and NNS as a preload, in which they are consumed slightly 
before providing calories. In both sets of studies, the results displayed the inert nature of 
NNS and showed that they do not produce any alteration in acute glucose or other meta-
bolic responses including insulin, GLP-1, GIP, and glucagon. 

4.4. Strengths and Limitations 
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The present systematic review and network meta-analysis has several strengths. The 
use of network meta-analysis allowed for simultaneous comparison of beverages sweet-
ened with NNS (single and blends) with water and beverages sweetened with caloric 
sweeteners. This was important because NNS represent a heterogeneous group of com-
pounds with distinct absorption, distribution, metabolism, and excretion kinetics [23]. In 
addition, beverages sweetened with caloric sweeteners (e.g., sucrose) are the target of the 
intended replacement strategy, while water typically represents the “standard of care”. 
Other strengths included a comprehensive literature search, extension of outcomes be-
yond glucose and insulin, recalculation of missing iAUC data in studies, subgroups by 
patterns of food intake and health status, and use of CINeMA and GRADE to assess the 
confidence in our effect estimates. 

There were also several limitations in our synthesis. First, there was evidence of seri-
ous imprecision in several pooled estimates, particularly when comparing beverages 
sweetened with NNS (single and blends) with each other and with water. The 95% CI 
crossed the prespecified minimal important difference for the primary outcome of post-
prandial blood glucose and several secondary outcomes across the three patterns of in-
takes. Evidence was downgraded further for several secondary outcomes due to the avail-
ability of only one or two direct comparisons. Second, there was evidence of within-study 
bias for several pooled estimates in the primary and secondary outcomes due to the in-
clusion of non-randomized trials. Third, a few pooled estimates in the primary and sec-
ondary outcomes were downgraded due to heterogeneity and incoherence, as computed 
by the CiNEMA software. 

Balancing these strengths and limitations, we assessed the confidence in the estimates 
as generally moderate to high for postprandial glucose and insulin when comparing NNS 
beverages sweetened with single or blends of NNS with water/unsweetened controls and 
SSBs sweetened with caloric sweeteners across the three patterns of intakes. For the re-
maining outcomes, we assessed the confidence as generally low to moderate. 

4.5. Implications 
Our findings are relevant to the biological plausibility that has been proposed by 

several epidemiological and experimental studies related to NNS consumption and the 
potential for cardiometabolic harm [73]. In our analyses, we found no differences in acute 
metabolic and endocrine responses which regulate glucose and food intake regulation 
when comparing NNS (single and blends) with water across three patterns of intake (un-
coupled, coupled, and delayed coupling interventions). Furthermore, these findings sup-
port data from recent systematic reviews and network meta-analyses of RCTs [65] and 
prospective cohort studies [64] that support substituting SSBs with NNS beverages for 
cardiometabolic benefits. In addition to single sweeteners, we also examined NNS blends 
which are commonly consumed making our findings relevant to the real-world [74]. 
Lastly, our analyses focused on beverages, the most important source of NNS in a diet, 
and a single food matrix [75,76]. 

5. Conclusions 
This systematic review and network meta-analysis found that NNS beverages sweet-

ened with single or blends of NNS had no meaningful effects on postprandial glucose and 
endocrine responses across three patterns of food intake (uncoupling interventions, cou-
pling interventions, and delayed coupling interventions). Together, these data fall in line 
with recent syntheses of long-term data from RCTs and prospective cohort studies which 
support the use of NNS beverages as an alternative replacement strategy for SSBs similar 
to water (the “standard of care”). 

Supplementary Materials: The following supporting information can be downloaded at 
www.mdpi.com/xxx/s1. Figure S1: title, Table S1: title, Video S1: title. 
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